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SUMMARY  

We  implemented  an  enhanced  version  of  Conway's  Game  of  Life  --  Game  of  Civilization  in                

CUDA  and  OpenMP.  Our  parallel  version  achieved  3~10x  speedup  on  reasonably-sized  inputs.  Game  of               

Civilization  follows  the  same  set  of  rules  of  life  as  Conway’s  Game  of  Life.  The  major  additional  feature                   

is  that  cells  living  close  to  each  other  would  cluster  together  to  form  tribes  or  nations  and  those                   

civilizations   occasionally   go   to   war   when   they   are   bored   like   human   societies   do.   

 

MOTIVATION   &   BACKGROUND  

The  goal  of  the  project  is  to  1)  explore  parallelism  in  graph  algorithms;  and  2)  parallelize  the                  

Game   of   Civilization   to   achieve   optimal   speedup.  

One  major  challenge  in  parallelizing  many  kinds  of  computations  on  graph  is  dependency  issues:               

results  on  one  part  of  the  graph  depends  on  the  results  of  other  parts  of  the  graph  (e.g.  union  find).  Our                      

game  of  civilization  serves  well  as  a  small  playground  for  this  type  of  graph  algorithms,  because  the                  

cluster  building  process  of  each  civilization  affects  the  others.  As  the  cells  cluster  together  to  form                 

civilizations,  they  can’t  all  start  searching  for  nearby  lives  at  the  same  time,  but  have  to  wait  for  a  few                     

leader  cells  to  perform  a  breadth  first  search  to  collect  everybody  in  the  neighborhood,  otherwise  there                 

will   be   a   large   number   of   civilizations   with   almost   the   same   set   of   members.   

We  seek  to  tackle  this  problem  by  breaking  the  graph  into  many  disjoint  smaller  graphs,  so  that                  

computations  can  happen  in  parallel  in  each  local  section  of  the  graph.  As  we  know  about  the  Game  of                    

Life,  the  density  of  lives  are  never  too  high  in  any  of  the  local  areas,  otherwise  the  cells  will  suffocate  to                      

death.  The  living  cells  usually  live  in  small  groups  on  different  areas  of  the  map.  This  nature  of  the  game                     
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provides  us  the  opportunity  to  dissect  the  graph  (map)  into  several  local  regions  with  relatively  higher                 

population   density,   where   civilizations   are   most   likely   to   appear.  

Ideally  for  each  civilization  or  cluster,  we  want  to  call  the  searching  algorithm  once  and  find  all                  

members  at  one  go.  The  optimal  location  to  start  searching  would  be  the  cluster  center.  So,  our  major  task                    

boils   down   to   locating   all   cluster   centers.   

There  are  three  phases  of  the  simulation:  update  lives  (original  Game  of  Life),  forming               

civilizations,  and  update  the  nations’  population  due  to  war.  To  recap,  the  revised  game  rules  are  as                  

follows:  

- Any   live   cell   with   fewer   than   two   live   neighbors   dies.  

- Any   live   cell   with   two   or   three   live   neighbors   lives   on   to   the   next   generation.  

- Any   live   cell   with   more   than   three   live   neighbors   dies.  

- Any   dead   cell   with   exactly   three   live   neighbors   becomes   a   live   cell,   as   if   by   reproduction.  

- Lives   that   are   close   to   each   other   form   a   nation.  

- At  each  generation,  the  power  of  the  nation  is  technology  index  *  population.  Technology  index                

increases   by   1   during   each   generation.  

- When  two  nations  are  close  together,  there  is  a  0.1  chance  they  will  go  to  war.  The  engaging                   

nations  will  not  fight  for  the  5  generations  after.  Winning  nation  inherits  the  population  and  the                 

higher   technology   index   among   the   two.  

 

The  reason  to  introduce  the  rules  of  war  is  to  inject  some  randomness  in  the  game,  so  that  we  can                     

better  show  that  our  algorithm  is  very  responsive  to  the  changing  state  of  the  world  and  they  perform                   

consistently   well   across   all   situations.   

 

 

 

 



APPROACHES   

The  following  workflow  diagram  is  a  rough  sketch  of  all  the  logic  sections  of  our  simulation  of                  

how  lives  and  civilizations  evolve.  We  will  be  explaining  the  details  of  each  section  and  our  rationale                  

behind   it   below.   

Simulation   Workflow  

 

Figure   1:   Simulation   workflow  

 

Phase   1:   Update   Lives  

The  2-D  grid  is  represented  as  an  1-D  vector.  Each  index  represents  a  live  cell.  Since  each  live                   

cell  only  depends  on  the  previous  state  of  its  neighbors,  it  can  be  trivially  parallelized  on  GPUs.  The  work                    

 



is  data  parallel.  Spatial  locality  can  be  achieved  by  launching  consecutive  live  cells  at  the  same  time.  The                   

algorithm   is   not   suitable   for   SIMD   due   to   a   large   number   of   conditional   statements.  

We  parallelized  the  original  Game  of  Life  with  CUDA.  The  update  step  was  trivially               

parallelizable  due  to  its  independent  nature.  However,  we  observed  <  2x  speedup  with  naive  parallelism.                

We  propose  that  the  work  assigned  to  each  thread  is  too  little,  making  the  overhead  for  creating  thread                   

significant.  We  measure  the  performance  with  each  thread  responsible  for  1,  2,  4,  8,  16  live  cells.  Four                   

cells   per   thread   gave   us   the   best   result,   with   a   3-10x   speedup   on   various   number   of   iterations.   

Another  problem  we  encountered  was  how  we  should  copy  the  result  vector  back  and  forth                

between  device  and  host.  We  realized  that  we  do  not  need  the  array  unless  we  want  to  print  out  the  results,                      

so  we  only  copy  back  when  printing  and  have  each  thread  responsible  for  copying  its  corresponding  index                  

from   the   “future”   array.   

 

Figure   2:   mapping   CUDA   cells   to   vector   indices  

 

Phase   2:   Approximate   Cluster   Centers  

BFS  is  very  difficult  to  parallelize  because  of  its  dependency  across  loop  iterations.  While  we  can                 

consider  multiple  neighbors  at  the  same  time,  pushing  to  the  work  queue  must  be  done  sequentially.  There                  

is  very  little  room  for  parallelism  beyond  this.  However,  if  we  can  launch  multiple  unconnected  instances                 

of  BFS  at  the  same  time,  this  would  save  a  lot  of  time,  but  we  need  to  estimate  where  the  centers  of  those                        

disjoint  clusters  are  first.  In  addition,  if  we  have  an  approximation  for  the  graph’s  center,  we  can  reduce                   

the   average   distance   between   BFS   starting   point   and   its   connected   notes.   

 



To  approximate  the  cluster  centers,  we  need  to  have  a  rough  idea  of  the  population  density                 

distribution  across  the  map.  We  use  three  different  layers  of  convolution  to  do  this:  local  summing,  local                  

min,  and  min  pooling.  Convolution  is  perfect  for  parallelism,  especially  with  tools  such  as  OpenMP,                

because   computation   of   each   local   region   is   independent   from   each   other.   

As  less  portion  of  work  is  inherently  sequential,  and  by  leveraging  on  the  fact  that  convolution  is                  

highly   parallelizable,   we   should   be   able   to   achieve   a   quite   good   speedup   according   to   Amdahl’s   Law.  

To  better  demonstrate  the  effect  of  each  layer,  let’s  use  the  world  state  at  the  27th  generation  as  an                    

example,   where   different   color   encodes   different   tribes.  

Figure   3:   world   state   at   the   27th   generation  

 

First   layer:   Local   Summing   Convolution  

If  we  use  a  convolution  matrix  of  size  10,  the  local  summing  convolution  basically  counts  the                 

total  number  of  lives  within  every  local  10  by  10  region.  We  use  OpenMP  for  this  part  of  the  task  and                      

from  repeated  experiments,  we  find  this  layer  of  convolution  achieves  the  optimal  computation  with  4                

 



threads  on  static  scheduling.  All  the  following  convolution  layers  use  the  same  parallelizing  method  due                

to  their  similar  computation  logic.  Although  in  hindsight,  we  realize  CUDA  might  be  more  suitable  for                 

this   task.   More   analysis   on   the   performance   is   discussed   in   the   Results   section.   

The  result  in  the  27th  generation  is  pasted  below.  The  double  digits  head  count  made  the  central                  

region  along  the  diagonal  looks  more  denser  than  the  rest  of  the  map,  which  matches  the  fact  that  most                    

living  cells  concentrate  around  the  diagonal.  It’s  very  much  like  a  heat  diagram  of  the  population  density.                  

At  this  point,  we  already  have  a  not-so-good  approximation  of  where  the  clusters  are.  However,  this                 

approximated   central   region   is   still   quite   fat   and   we   still   don’t   see   obvious   cluster   boundaries.   

 

figure   3:   Local   summing   convolution   result   of   the   27th   Generation  

 

Second   layer:   Local   min   layer  

The  purpose  of  this  layer  is  self-evident.  If  the  convolution  matrix  has  size  3x3,  we  iterate                 

through  all  cells  and  marks  down  the  minimum  number  in  the  3x3  area  with  this  cell  at  the  center.  This  is                      

 



to  make  the  central  strip  along  the  diagonal  slimmer,  so  that  the  cells  bordered  on  a  lot  of  zeros  (i.e.  they                      

live  near  the  cluster  boundaries  rather  than  the  center)  would  be  also  zeroed  out.  We  don’t  care  about                   

these  cells  because  we  know  that  they  are  not  likely  to  be  the  cluster  centers  we  are  looking  for.  The                     

resultant  matrix  is  pasted  below,  from  which  we  can  observe  a  much  narrower  band  of  double  digit                  

numbers.   

 

figure   4:   Local   min   convolution   result   of   the   27th   Generation  

 

Third   layer:   Min   pooling  

In  the  min  pooling  layer,  with  a  10x10  convolution  matrix  for  example,  we  mark  down  the  minimum                  

number  of  each  10x10  area.  We  use  the  minimum  population  as  the  approximation  of  the  local  population                  

density,  because  the  cluster  centers  would  usually  have  the  highest  local  min.  By  looking  at  the  maximin,                  

we  can  successfully  locate  the  cluster  centers.  Again,  we  have  the  resultant  min  pooled  matrix  from  the                  

27th  generation  below.  The  central  band  of  double  digit  numbers  along  the  diagonal  has  shrunk  to  a  few                   

 



discrete  groups  of  numbers  cut  off  by  zeros.  We  pick  out  a  few  cells  with  highest  numbers  from  each                    

group   to   be   our   candidates   of   the   cluster   centers   and   pass   them   to   the   next   phase   to   do   graph   searching.   

 

figure   5:   Min   pooling   result   of   the   27th   Generation  

 

Phase   3:   Build   Tribes   with   BFS  

Now  that  we  have  a  rough  estimation  of  where  the  cluster  centers  are,  the  next  step  is  to  search                    

the  neighborhood  using  BFS  to  find  all  members  of  each  tribe.  Arguably,  it  can  be  easily  done  with                   

K-means  clustering,  which  is  also  highly  parallelizable.  However,  note  that  the  motivation  of  this  project                

is  to  experiment  with  how  to  dissect  graphs  into  smaller  parts  to  enable  independent  and  therefore                 

parallelizable  computation  in  each  part.  Parallelism  in  point  cloud  or  cellular  automaton  is  obvious,  while                

parallel  graph  processing  can  be  tricky  because  there  are  edges  representing  the  relationship  between  the                

vertices,  i.e.  vertices  are  not  independent  in  graphs.  So,  we  use  BFS,  an  inherently  not  parallelizable                 

algorithm,   to   test   if   our   idea   of   dissecting   the   graph   could   work.   

 



We  still  use  OpenMP  to  parallelize  across  multiple  BFS  calls.  With  or  without  OpenMP  turned                

on,  the  map  outputs  are  highly  identical,  meaning  the  parallel  BFS  calls  rarely  interfere  with  each  other.                  

This   proves   the   feasibility   of   our   approach   in   dissecting   the   graph   into   independent   subsections.   

 

RESULTS   

Phase   1:   Update   Lives  

We  measured  the  program  runtime  by  adding  timers  just  before  and  after advanceGame()  on               

the  GHC  cluster  machines.  Initializations  such  as  CudaMemcpy  are  excluded  from  the  results.  We               

compared  the  parallel  version  against  sequential  version  across  both  input  size  and  number  of  simulation                

steps.   We   used   a   “repeated   pattern”   for   GoL   so   that   the   output   never   converges.   

In  the  first  experiment,  we  tweaked  the  grid  size  and  ran  the  simulation  for  1000  iterations.  We                  

believe  that  the  speedup  will  increase  dramatically  until  a  certain  number  (max  threads  CUDA  can                

launch),  where  it  becomes  linear.  The  experiment  results  confirmed  our  hypothesis,  as  the  speedup               

remains   constant   after   hitting   an   array   size   of   50000.  

We  conducted  the  same  experiment  on  a  purely  empty  grid.  Our  initial  hypothesis  is  that  empty                 

grids  will  have  a  higher  speedup  because  there  will  be  less  divergence  in  the  wrap.  Interestingly,  the                  

speedup  is  approximately  the  same  with  divergence  and  without.  We  then  counted  the  number  of  times  we                  

entered  each  if-else  case  via  the  sequential  code.  It  turns  out  that  all  our  test  files  either  repeats  or                    

diverges,  so  the  number  of  empty  cells  always  overwhelms  number  of  lives.  Divergence  is  less  a  problem                  

as   the   simulation   progresses.   

 



 

figure   6:   [Experiment   1]   CUDA   speedup   across   different   grid   sizes   (speedup   against   size)  

 

The  second  experiment  measures  the  speedup  across  different  workloads  (simulation  steps).  We             

used  a  setup  that  never  converges,  with  grid  size  50  *  50.  The  speedup  increases  as  the  number  of  steps                     

grows  but  it  starts  to  decrease  after  hitting  100,  as  shown  in  the  figure  below.  We  expected  a  constant                    

speedup  as  the  output  image  simply  oscillates.  Each  step  should  take  approximately  the  same  time.  After                 

doing  some  research,  we  believe  that  the  decrease  is  due  to  a  long  CUDA  work  queue.  This  is  confirmed                    

by  adding sleep(0.1)  after  each  iteration  of  the  CUDA  simulator.  Sleep  time  was  included  in  the                 

results.  

 



 

figure   7   [Experiment   2]   CUDA   speedup   across   different   workload   (speedup   against   number   of   iterations)  

 

Phase   2:   Approximate   Cluster   Centers  

We  compared  the  results  across  two  spectrums:  different  game  patterns  and  different  grid  sizes.               

We  timed  the  function  init_tribes()  which  is  a  glue  function  for  the  computation  layers  mentioned                

in  the  previous  section.  We  measured  the  speedup  in  comparison  to  the  sequential  BFS  version  without                 

convolution  or  pooling.  Computation  time  for  the  original  Game  of  Life  was  excluded.  All  the                

experiments   were   done   on   GHC   machines,   which   4   threads   designated.   

 

Performance   Across   Input   Size  

We  ran  a  simulation  that  does  not  converge  within  40  steps.  It  initially  consists  of  1*5  dashes,                  

expands  to  circles,  collides  with  other  circles,  and  finally  diminishes.  We  measured  the  performance  for                

40  simulation  steps  on  square  grids  with  different  sizes.  The  parallel  version  is  significantly  faster  than                 

 



the  baseline,  but  the  speedup  does  not  meet  our  expectations.  We  timed  the  stages  in  order  to  find  out  the                     

problem:  

 

 parallel  baseline  

Convolution  8.928119ms  -  

Max   pooling   time  5.298823ms  -  

BFS   time  290.626180ms  -  

Search   nearby   tribes  4.622474ms  -  

Total   time   347.094311ms  459.690008ms  

 

 We  expected  high  speedup  in  convolution  and  max  pooling  step  but  we  only  get  3x.  We  believe                   

that   our   code   suffer   from   false   sharing   because   each   iteration   updates   a   corresponding   index   in   a   vector.   

In  addition,  we  found  that  we  made  more  calls  to  BFS  than  the  baseline  version.  This  might  be                   

due  to  the  fact  that  our  approximated  centers  are  much  more  than  the  actual  number  of  clusters  (if  we                    

have  4  clusters,  we  might  give  20-30  cluster  center  candidates),  therefore  inducing  higher  number  of  BFS                 

calls.  While  each  BFS  call  in  the  baseline  version  could  make  the  cluster  boundary  much  less  ambiguous                  

for  the  next  BFS  call,  so  that  the  next  call  would  only  start  somewhere  far.  Across  repeated  experiments,                   

we  observe  that  the  parallel  version  makes  less  BFS  calls  than  the  baseline  when  the  lives  are  very                   

concentrated  and  the  clusters  are  very  disjointed,  but  it  makes  much  more  calls  if  otherwise.  Therefore,                 

the  parallel  version  does  not  consistently  perform  better  than  the  baseline  across  all  iterations.  The                

solution  to  this  is  to  better  appromites  tribe  centers  (adding  more  layers)  so  that  a  giant  tribe  would  not                    

have   multiple   centers   to   perform   BFS   from   and   then   stitch   the   neighborhoods   together.   

 



 

figure   8:   simulation   time   across   different   input   sizes   (simulation   time   in   milliseconds   vs.   grid   size)  

 

Performance   Across   Input   Patterns  

Our  parallel  algorithm  is  best  suited  for  clustered  inputs.  It  reduces  to  mere  BFS  on  extremely                 

scattered  clusters.  To  test  the  exact  performance,  we  created  four  different  patterns:  oscillating  strips,               

scattered  squares,  progressing  strips,  and  random.  Neither  of  them  extinct  in  50  iterations.  We  measured                

their   performance   at   50   iterations,   with   grid   size   100   *   100.   

 

 baseline   [ms]  parallel   [ms]  speedup  

oscillating   strips  268.493  275.44  0.974  

scattered   squares  459.69  347.09  1.324  

progressing   strips  141.93  62.07  2.286  

random  177.12  107.00  1.655  

 

 



 

 

figure   9:   oscillating   strips,   scattered   squares,   progressing   strips,   and   random  

 

For  “oscillating  strips”,  since  the  1*3  strips  are  evenly  separated  from  each  other,  they  were                

treated  as  a  giant  nation.  Our  parallel  version  reduces  to  pure  BFS.  The  parallel  version  performs  worse                  

because  it  needs  to  do  the  useless  convolution  work  in  addition  to  BFS.  “Scattered  Squares”  also  consists                  

of  repeated  patterns  but  they  are  scattered  in  small  nations.  We  can  therefore  launch  multiple  BFS  at  the                   

same  time  and  there  is  a  tiny  speedup.  We  observe  the  highest  speedup  on  “progressing  strips”,  a  pattern                   

that  won’t  converge  until  the  simulation  step  specified.  The  number  of  lives  remains  approximately  the                

same  but  they  are  constantly  moving.  We  can  see  the  benefit  of  clustering  as  the  lives  move  closer                   

together.   

 

Conclusion  

We  successfully  improved  the  performance  for  the  Game  of  Civilization.  We  reached  our  targeted               

speedup  on  the  cell  updating  phase  but  did  not  reach  the  targeted  speedup  for  tribe  detection.  This  proves                   

our  approach  of  dissecting  the  graph  into  smaller  independent  subsections  could  work,  which  we  consider                

it   as   a   nice   attempt   at   parallel   graph   processing.  
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